Rhythm Control of Human Walking
Research Paper: T Funato, et al., PLoS Computational Biology, 2016.
Humans and animals tune their walking rhythms when motion is disturbed, such that they hesitate before making the transition from stance to swing phase. The effectiveness of rhythm control for stability has also been shown, and thus the elucidation of rhythm responses is important to understanding human strategies for walking control. In this research, how and when humans change their walking rhythm in response to disturbance is analyzed over the complete walking cycle. Phase response of human walking has previously been estimated by pulling the swing leg. The problem with this perturbation is that it hardly disturbs the stance leg, so here we apply the perturbation by changing floor velocity. However, perturbation from the floor yields another problem in that it weakly influences the swing leg, decreasing the precision of the PRC. The present research tackles this problem by introducing a new method for identifying rhythm characteristics by use of high-frequency perturbation, which allows us to obtain results with clear temporal resolution. We found that the human walking rhythm changes by lengthening the touch-down and mid-single support phases. These phase responses are compared with neural mechanisms for rhythm control, and relevance to the cutaneous and proprioceptive originated responses is shown.